Fast Computation of Spectral Densities for Generalized Eigenvalue Problems
نویسندگان
چکیده
The distribution of the eigenvalues of a Hermitian matrix (or of a Hermitian matrix pencil) reveals important features of the underlying problem, whether a Hamiltonian system in physics, or a social network in behavioral sciences. However, computing all the eigenvalues explicitly is prohibitively expensive for real-world applications. This paper presents two types of methods to efficiently estimate the spectral density of a matrix pencil (A,B) when both A and B are Hermitian and, in addition, B is positive definite. The first one is based on the Kernel Polynomial Method (KPM) and the second on Gaussian quadrature by the Lanczos procedure. By employing Chebyshev polynomial approximation techniques, we can avoid direct factorizations in both methods, making the resulting algorithms suitable for large matrices. Under some assumptions, we prove bounds that suggest that the Lanczos method converges twice as fast as the KPM method. Numerical examples further indicate that the Lanczos method can provide more accurate spectral densities when the eigenvalue distribution is highly non-uniform. As an application, we show how to use the computed spectral density to partition the spectrum into intervals that contain roughly the same number of eigenvalues. This procedure, which makes it possible to compute the spectrum by parts, is a key ingredient in the new breed of eigensolvers that exploit “spectrum slicing”.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملSpectral approximation to a transmission eigenvalue problem and its applications to an inverse problem
We first develop an efficient spectral-Galerkin method and an rigorous error analysis for the generalized eigenvalue problems associated to a transmission eigenvalue problem. Then, we present an iterative scheme, based on computation of the first transmission eigenvalue, to estimate the index of refraction of an inhomogeneous medium. We present ample numerical results to demonstrate the effecti...
متن کاملThe Design of a Block Rational Lanczos Code with Partial Reorthogonalization and Implicit Restarting
We discuss the design and development of a new Fortran code EA16 for the computation of selected eigenvalues and eigenvectors of large-scale real symmetric eigenvalue problems. EA16 can be used for either the standard or the generalized eigenvalue problem. The underlying method used by EA16 is the block Lanczos method with partial reorthogonalization plus implicit restarting, combined with purg...
متن کاملA semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems
In this paper, we are concerned with the computation of a few eigenpairs with smallest eigenvalues in absolute value of quadratic eigenvalue problems. We first develop a semiorthogonal generalized Arnoldi method where the name comes from the application of a pseudo inner product in the construction of a generalized Arnoldi reduction [25] for a generalized eigenvalue problem. The method applies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017